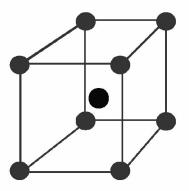
Materials and Code Basics

Senior Analyst and Inspector Training Crude Units

Nature of Metals

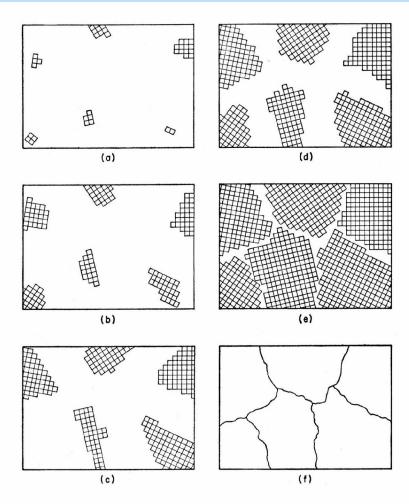

Metals behavior is largely determined by its:

Copyright @ 2012 by Chevron Energy Technology Company

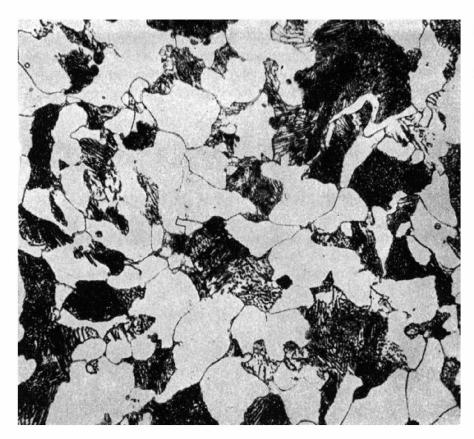
To be reproduced and used only in accordance with written permission of ETC

- Crystal structure and phase
- Chemical composition
- The crystal structure refers to the highly ordered way the major atoms of the steel are arranged

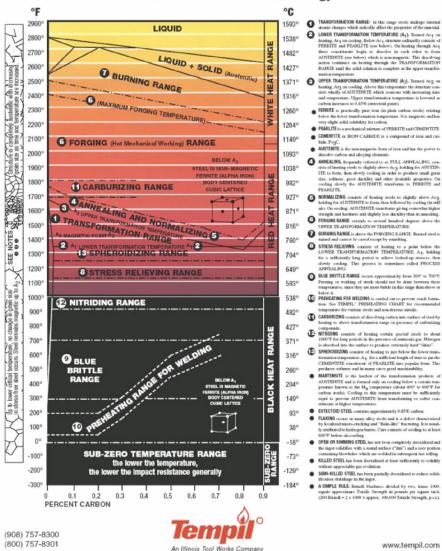
Example: Steel at room temperature has the iron atoms arranged in the "body centered cubic" crystal structure (called "ferrite")


Nature of Metals

- Most metals used in refining are actually alloys, and contain more than one element
 - "Carbon steel" is an alloy of iron, carbon, and usually manganese and silicon
 - "Low alloy steel" usually contains 1-9% Cr, Ni, Mo, or other elements to improve the strength, toughness, or other properties
- Most metals we use involve more than one phase
 - Iron carbides in steel provide strength
 - Sulfide or oxide inclusions create weak spots for mechanical or hydrogen damage


Formation of Grains and Grain Boundaries in Metals

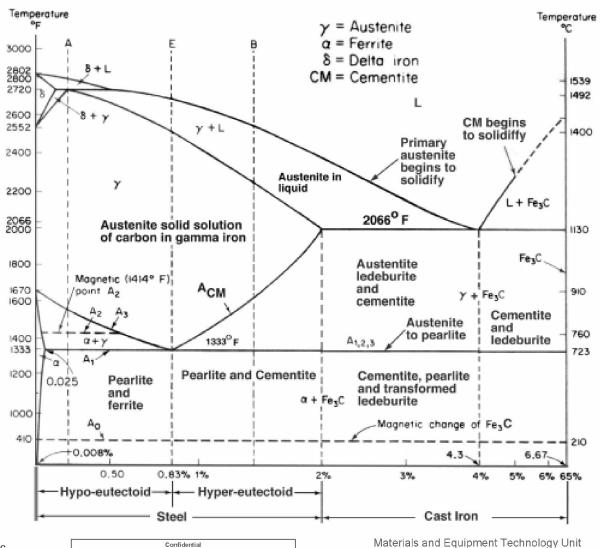
Ferrite-Pearlite Microstructure of Carbon Steel



- White: Ferrite
- Black: Iron-Carbide
- Laminar areas of mixed Ferrite & Iron-Carbide is called Pearlite

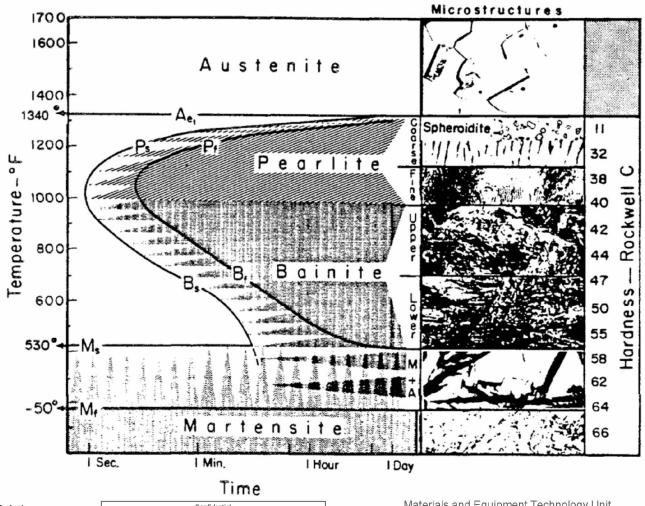
Basic Guide to Ferrous Metallurgy

Copyright @ 2012 by Chevron Energy Technology Company


To be reproduced and used only in accordance with written permission of ETC

www.tempil.com

Materials and Equipment Technology Unit Senior Analyst and Inspector Training . Crude Units


Iron-Carbon Phase Diagram

Time-Temperature-Transformation Diagram

Heat Treatment Terminology

Carbon and Alloy Steels

- Annealing: Heating a steel to about 1650°F (900°C) so that a single phase develops, with all of the elements dissolved in it, followed by a very slow cool (furnace cool) to prevent hardening. This is the softest and lowest strength state.
- Normalizing: Heating carbon or low alloy steels to about the same temperature as annealing, but cooling fairly rapidly in air. Improves toughness of steels.
- Quenching: Rapidly cooling from annealing temperatures, such as by using oil or water sprays. Results in higher hardness and strength.
- Post-Weld Heat Treatment (PWHT): Performed after welding to reduce residual stresses and, for ferritic steels, to temper (soften) the weld zone and improve its toughness
- **Tempering**: Typically done after quenching at temperatures similar to those used for PWHT (e.g., 1300°F/705°C for 2.25 Cr) to relieve the stresses and soften the material)

Copyright @ 2012 by Chevron Energy Technology Company

To be reproduced and used only in accordance with written permission of ETC

Heat Treatment Terminology (Cont'd)

Stainless Steels

- Solution Annealing: Most often our industry uses the term to refer to heat treatment of stainless steels (say, at 2100°F/1150°C) with controlled cooling to provide maximum corrosion resistance
- Stabilize Annealing: Sometimes called thermal stabilization. A heat treatment of some stainless steels to "stabilize" or "lock in" desirable carbides. This allows the SS to be used effectively at high temperatures.

Ferritic Steels: Characteristics

- Includes carbon steels, Cr-Mo alloy steels, and 400 Series stainless steels
- Are magnetic
- Exhibit ductile-to-brittle transition temperature
- Most are "hardenable" by heat treatment or welding
- Post-weld heat treated to relieve stress and reduce hardness
- Immune to chloride SCC
- Susceptible to cracking by wet H₂S, carbonate, amine

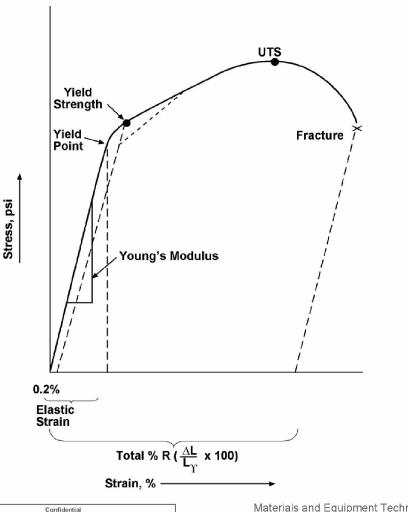
Copyright @ 2012 by Chevron Energy Technology Company

To be reproduced and used only in accordance with written permission of ETC

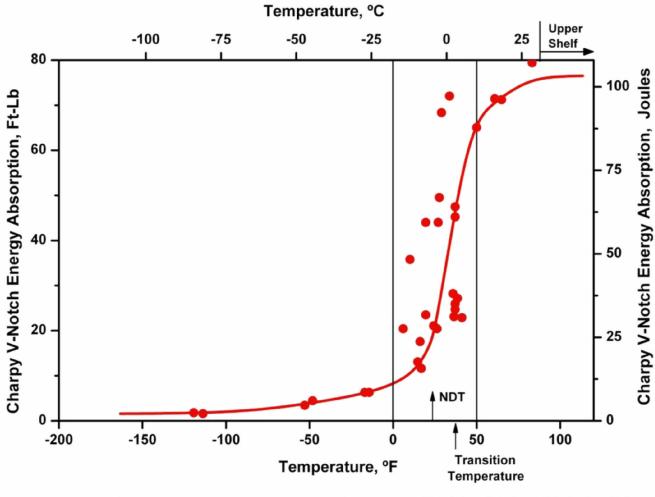
EPA

Austenitic Steels: Characteristics

- Includes most 300 Series stainless steels and high Ni steels
- Are non-magnetic, but welds and castings have some magnetism (ferrite)
- No ductile-to-brittle transition; good toughness at low temperature
- Are not hardenable by heat treatment (a few precipitation hardened {PH} SS are exceptions)
- Post-weld heat treated for stress relief, for corrosion resistance, or to soften (especially after cold working)
- Susceptible to chloride SCC
- Resist cracking by wet H₂S, carbonate, amine


Comparison: C & C-Mn Steel Versus Cr-Mo Steels

Characteristic	C&C-Mn Steels	Cr-Mo Steels
Hardening by Heat Treatment or Welding	Low	High
Preheat for Welding	Heavy Sections Only	Always
PWHT Required	>1-1/2" (38 mm) Thick, or for Environment	"Always," With Few Exceptions
In-Service Embrittlement	No (Rare)	Yes 650-1050°F (345-565°C)
Allowable Stress at 1000°F (540°C)	<3 ksi (21 MPa)	7-10 ksi (48-69 MPa)
Maximum Code Temperature, °F	1000 (540°C) (800°F / 425°C for Graphitization)	1200 (650°C)
H₂ Attack Limit at 750 psia, °F	500 (260°C)	1000 (540°C)


Nominal Stress; Strain Diagram

Charpy V-Notch Energy Absorption of A516 Grade 70 Steel

U.S. Codes Applicable to Various Equipment Items

Tressure vessels	
Design & Fabrication	ASME Section VIII Div. 1;
	ASME Section VIII Div. 2

Inspection & Repair NBIC / API 510
Fitness for Service API RP 579 / ASME FFS-1

Process Piping

Pressura Vassals

Design & Fabrication
Inspection & Repair
Fitness for Service

ASME/ANSI B31.3
API 570
API RP 579 / ASME FFS-1

Fired Heaters

Tube Design

Inspection & Repair

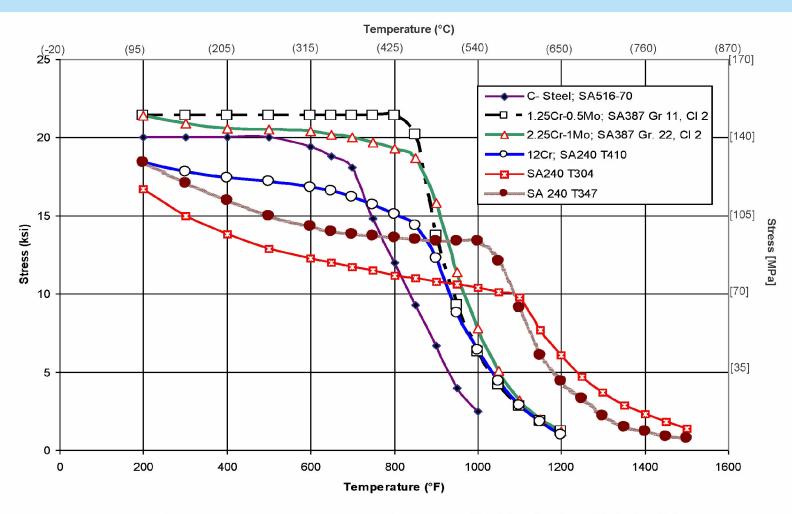
Fitness for Service

API RP 530

API RP 573

API RP 579 (Omega)

Basis for Establishing Allowable Stresses for Materials Other Than Bolting



• Allowable stresses are the lowest value obtained from specified percentages of the following properties:

	ASME Section VIII					
Property	Division 1	Division 2				
Tensile Strength	28.6 (25 Prior to 1999)	41.7				
Yield Strength	66.7	66.7				
1% Creep in 100,000 Hours	100 (of Average)	Same				
Stress to Rupture in 100,000 Hours	67 (of Average) 80 (of Minimum)	Same Same				

Allowable Stresses for Plate Steels ASME Section VIII Division 1

Material Temperature Limits, °F (°C)

	Carbon	C-	1-1/4 Cr -	2-1/4 Cr -	5 Cr -	12 Cr	18 Cr -	25 Cr -
	Steel	1/2 Mo	1/2 Mo	1 Mo	1/2 Mo	(410)	8 Ni (304)	20 Ni (310)
Strength (3,000 psi) (20,700 kPa)	990 (530)	1075 (580)	1135 (615)	1150 (620)	1115 (600)	1100 (595)	1275 (690)	1320 (715)
Oxidation (10 mpy Loss) (0.25 mmpy)	1050 (565)	1050 (565)	1100 (595)	1175 (635)	1200 (650)	1400 (760)	1500 (815)	2050 (1120)
Graphitization (Welded Only)	800 (425)	850 (555)						
Tampar Embrittlement				650-1050				
Temper Embrittlement				(345-525)				
885 Embrittlement						650-950		
						(345-510)		
Sigma Embrittlement							1100-1700	1100-1700
							(595-925)	(595- 925)
Hardening on Cooling	1330 (720)	1350 (730)	1375 (745)	1425 (775)	1425 (775)	1450 (790)		
Hydrogen Damage								
(H ₂ pp, 750 psi) (5,200 kPa)	500 (260)	500 (260)	1000 (540)	1100 (595)	1150 (620)			
(H ₂ pp, 2000 psi) (13,800 kPa)	460 (240)	460 (240)	650 (345)	850 (555)	1125 (605)			
Caustic Embrittlement Stress Corrosion Cracking	110 (45)	110 (45)	110 (45)	110 (45)	110 (45)	110 (45)	200 (95)	200 (95)
Chloride Stress Corrosion Cracking							140 (60)	140 (60)
Sulfidation (Hot H ₂ S Corrosion)	500 (260)	500 (260)	500 (260)	500 (260)	650 (345)			
Hot H ₂ -H ₂ S Corrosion (0.1 psia H ₂ S)	500 (260)	500 (260)	500 (260)	500 (260)	500 (260)	750 (340)	950 (510)	950 (510)
Onset of Creep	800 (425)	900 (480)	900 (480)	900 (480)	900 (480)	950 (510)	1100 (595)	1100* (595*)
Sensitization							750-1500	750-1500 (400-815)
Naphthenic Acid Corrosion	350 (175)	350 (175)	350 (175)	350 (175)	350 (175)	350 (175)	350 (175)	350 (175)

^{*}Cast 25 Cr - 20 Ni (HK40) is 1400°F (760°C)

2007 Relative Pricing of Different Alloys Budget Prices of Tubes in 10,000 Lb Quantities

Size	Material	ASTM	\$/100 Ft
0.085	CS wld	SA-214	60.00
0.083	CS smls	SA-179	85.00
0.083	11/4 Cr-1/2 Mo smls	SA-213 T11	150.00
0.083	5 Cr-½ Mo	SA-213 T5	185.00
0.049	Duplex 22 Cr-5 Ni wld	SA-789 GR2205	249.00
0.065	18 Cr–8 Ni–Ti wld	SA-249 T321	257.00
0.065	Duplex 22 Cr-5 Ni wld	SA-789 GR2205	311.00
0.065	Admiralty smls	SB-111 CA443	350.00
0.049	Duplex 22 Cr-5 Ni smls	SA-789 GR2205	586.00
0.065	Duplex 22 Cr-5 Ni smls	SA-789 GR2205	642.00
0.049	825 wld	SB-704	870.00
0.065	825 wld	SB-704	1252.00
0.049	825 smls	SB-423	1920.00
0.065	825 smls	SB-423	2373.00
0.065	Hastelloy C-276 smls	SB-622 GRC-276	4304.00

Source: Courtesy of Benicia Fabrication & Machine 5/2007

Typical ASTM Specifications for Materials

Material	Plate	Pipe	Tubing	Forgings	Bars	Castings
Cast Iron						A48
						A278
Carbon Steel	A285	A53	A161	A105	A575	
	A515	A106	A179	A181	A576	
	A516	A671	A210		A663	
		A672	A214		A675	
		A691				
Carbon - 1/2 Mo	A204	A335	A161	A182		A217
			A209			
1 Cr - 1/2 Mo, 1-1/4 Cr -	A387	A335	A213	A182		A217
1/2 Mo, & 2-1/4 Cr - 1 Mo						
5 Cr - 1/2 Mo	A387	A335	A213	A182		A217
12 Cr, CA 15	A240		A268	A182	A479	A217
Austenitic Stainless 304, 304L,	A240	A312	A213	A182	A479	A351
316, 316L, 321, 347, 310, CF3,		A358	A249			A744
CF3M, CF8, CF8C, CF8M						
HK40 & HP Modified						A297
Duplex Stainless 2205	A240	A790	A789	A182	A276	
Super Stainless AL6XN	B688	B675	B676			

Typical ASTM Specifications for Materials

Material	Plate	Pipe	Tubing	Forgings	Bars	Castings
Incoloy Alloy 800	B409	B407	B407		B408	
Incoloy Alloy 825	B424	B423	B163		B425	
904L	B625	B673	B674		B649	
		B677	B677			
Alloy 20	B463	B464	B468	B462	B472	A351
Copper	B152	B42	B75			
			B111			
Admiralty Brass			B111 (Grades B, C, D)			
Naval Brass	B171				B124	
70-30 Cu-Ni	B171	B467	B111			
		B608	B395			
Titanium	B265	B337	B338	B381	B348	B367
Monel	B127	B165	B163		B164	
Inconel 625	B443	B444	B444	B446		
Hastelloy C276	B575	B622	B622	B574		A494
Ni Resist						A436
Aluminum	B209	B241	B234	B247	B211	

Chromium Steels – Typical Chemistry and Strength

			Chemistry									Tensile	Yield
Material	Grade/ Class	С	Mn	Cr	Мо	Ż	V	Cu	Z	įΕ	В	Strength, ksi [MPa]	Strength, ksi [MPa]
AISI	4140	0.4	0.9	1.0	0.2							90-200 [620-1380]	60-175 [415-1205]
AISI	4340	0.4	0.7	0.8	0.2	1.8						110-220 [760-1515]	100-200 [690-1380]
SA387*	12	0.15	0.5	1.0	0.5							55 (65) [380 (450)]	33 (40) [230 (275)]
SA387*	11	0.15	0.5	1.2	0.5							60 (75) [415 (515)]	35 (45) [240 (310)]
SA387*	22	0.12	0.5	2.2	1.0							60 (75) [415 (515)]	30 (45) [205 (310)]
SA387*	5	0.15	0.5	5.0	0.5							60 (75) [415 (515)]	30 (45) [205 (310)]
SA387*	9	0.15	0.5	9.0	1.0							60 (75) [415 (515)]	30 (45) [205 (310)]

Note: Balance is Fe in all cases.

^{*} Tensile and yield values listed are minimum for Class 1 plate. Values in parenthesis are for Class 2 plate.

Ferritic, Martensitic, and Duplex Stainless Steels -Typical Chemistry and Strength

Common Name (UNS Number)	Cr	Ni	Mo	N	С	Other	Tensile Strength, ksi (MPa)	Yield Strength, ksi (MPa)
410 ¹ (S41000)	12	0.75			0.15		70 (480)	35 (250)
410S ¹ (S41008)	12	0.75			0.08		60 (415)	30 (200)
405 ² (S40500)	13	0.6			0.08	0.2 AI	60 (415)	25 (175)
430 ² (S43000)	17				0.1		65 (450)	30 (200)
440A ¹ (S44002)	17		0.6		0.7		105 (725)	60 (415)
2205 ³ (S32205)	22	5.5	3.0	0.14	0.02		90 (626)	65 (450)

Notes:

- 1. Martensitic
- 2. Ferritic
- 3. Duplex

Austenitic Stainless Steels – Typical Chemistry

Common Name							
(UNS Number)	Cr	Ni	Mo	Cu	Ν	С	Other
304L (S30403)	18	8				0.035	
316L (S31603)	17	11	2.1			0.035	
317L (S31703)	19	13	3.1			0.035	
321 (S32100)	18	11				0.08	$Ti = 5 \times (C + N)$
							(0.70% Max.)
347 (S34700)	18	11				0.08	$Cb + Ta = 10 \times C$
							(1.1% Max.)
HK-40	26	20				0.40	
HP Mod.	26	35				0.40	1.2 Cb
310 (S31000)	25	20				0.25	
Alloy 20 Cb3 (N08020)	20	33	2.1	3.5		0.07	$Cb = 8 \times C$
							(1.0 Max.)
AL-6XN (N08376)	20.5	24	6.2		0.2	0.02	
309 (S30900)	23	13				0.20	

Note: Balance is Fe in all cases.

Common Precipitation Hardening Stainless Steels – Typical Chemistry and Strength

			С		Tensile	Yield		
Common Name (UNS Number)	С	Cr	Ni	Mo	Cu	Other	Strength, ksi (MPa)	Strength, ksi (MPa)
17-4PH (S17400)	0.05	16.5	4		4	0.4 AI	150¹ (1030)	135 ¹ (930)
17-7PH (S17700)	0.06	17	7			1.2 AI	175 ² (1200)	155 ² (1070)
ASTM Grade 660 ³ (S66286)	0.04	15	25.5	1.2		2.1 Ti 0.006 B 0.25 V	140 (965)	95 (650)

Notes:

- 1. Precipitation Hardening Temperature: H 1100°F (400°C)
- 2. Precipitation Hardening Temperature: H 1050°F (565°C)
- 3. ASTM A 453 for Bolting, A638 for Forging

High Nickel Alloys – Typical Chemistry and Strength

Common Name (UNS Number)	Cr	Ni	Mo	Cu	С	Other	Tensile Strength, ksi ¹ (MPa)	Yield Strength, ksi ¹ (MPa)
Monel 400 (N04400)	I	66		31	0.1		70 (480)	25 (170)
Incoloy 800 (N08800)	21	32.5			0.05	0.4 Ti 0.4 Al	65 (450)	25 (170)
Incoloy 825 (N08825)	21	42	3	2.3	0.03	1 Ti	85 (590)	35 (240)
Inconel 600 (N06600)	15.5	76			0.08	8 Fe	80 (550)	30 (200)
Inconel 625 (N06625)	21.5	61	9		0.05	3.7 Cb 4 Fe	120 (830)	60 (415)
Hastelloy C-276 (N10276)	15.5	57	15.5		0.005	4 W 5.5 Fe	115 (800)	52 (560)

Note:

1. Annealed condition.

Copper Alloys – Typical Chemistry and Strength

	Chemistry					Tensile	Yield
Common Name						Strength,	Strength,
(UNS Number)	Cu	Zn	Sn	Al	Other	ksi (MPa)	ksi (MPa)
Admiralty Brass	70	29	1		0.05 As	48 (330)	18 (125)
(C44300)							
Naval Brass	60	39	0.7			58 (400)	25 (170)
(C46400)							
90-10 Cu-Ni	83				1.5 Fe	44 (300)	16 (110)
(C70600)					10 Ni		
70-30 Cu-Ni	69				0.7 Fe	54 (375)	20 (140)
(C71500)					30 Ni		341
Aluminum Bronze	90			7	3 Fe	76 (525)	33 (230)
(C61400)							
Copper	99.9					32 (220)	10 (70)
(C11000)							